Efficient computation of dendritic growth with r-adaptive finite element methods

نویسندگان

  • Heyu Wang
  • Ruo Li
  • Tao Tang
چکیده

This paper deals with the application of a moving grid method to the solution of a phase-field model for dendritic growth in twoand three-dimensions. A mesh is found as the solution of an optimization problem that automatically includes the boundary conditions and is solved using a multi-grid approach. The governing equations are discretized in space by linear finite elements and a split time-level scheme is used to numerically integrate in time. One novel aspect of the method is the choice of a regularized monitor function. The moving grid method enables us to obtain accurate numerical solutions with much less degree of freedoms. It is demonstrated numerically that the tip velocity obtained by our method is in good agreement with the previously published results. 2008 Elsevier Inc. All rights reserved. AMS: 65M20; 65N22; 80A22

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

متن کامل

Fast Finite Element Method Using Multi-Step Mesh Process

This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...

متن کامل

Efficient Computation of Dendritic Microstructures Using Adaptive Mesh Refinement

We study dendritic microstructure evolution using an adaptive grid, finite element method applied to a phase-field model. The computational complexity of our algorithm, per unit time, scales linearly with system size, allowing simulations on very large lattices. We present computations on a 217 3 217 lattice, but note that this is not an upper limit. Time-dependent calculations in two dimension...

متن کامل

Comparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures

In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008